If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+23x-374=0
a = 1; b = 23; c = -374;
Δ = b2-4ac
Δ = 232-4·1·(-374)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-45}{2*1}=\frac{-68}{2} =-34 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+45}{2*1}=\frac{22}{2} =11 $
| 15x+5+6x=47 | | 19+4x=3+12x | | (5w-4)+46=0 | | 3^n+2^n=35 | | -3(x+1)=6(x+7) | | -6(m-5+3)+2=-166 | | 1.05p=9 | | 10(2+5)+7b=5+2-5b | | 2/5x+19=33 | | 9g=72g= | | 9x+7=1-8x | | 1/6x+2=5/6x | | 13x+24=12x=3 | | x/7=35/14 | | 2x/6=3x-36+x | | 5.7+4.8c=8.5 | | 12(5=2y)=4y(5-9y) | | 54=t+t8 | | 3x+(5x+3)/5=x/3-1/5 | | 7b+2=32 | | -5x+2=14 | | t/6.24=-6= | | 2k+12k-8k=18k | | -3(2x+7)=33 | | x+2.4=4.5x= | | -3a+41=23 | | 4x-20=3x+1 | | x2+30=94 | | x=32=28 | | 12x+5=15+1/x | | y/2y+3=5y-9 | | 46+4-5w=180 |